Designs in a coset geometry: Delsarte theory revisited

نویسنده

  • Tatsuro Ito
چکیده

*KURAに登録されているコンテンツの利用については,著作権法に規定されている私的使用や引用などの範囲内で行ってください。 *著作権法に規定されている私的使用や引用などの範囲を超える利用を行う場合には,著作権者の許諾を得てください。ただし,著作権者 から著作権等管理事業者(学術著作権協会,日本著作出版権管理システムなど)に権利委託されているコンテンツの利用手続については ,各著作権等管理事業者に確認してください。 Title Designs in a coset geometry: Delsarte theory revisited Author(s) Ito, Tatsuro Citation European Journal of Combinatorics, 25(2): 229-238 Issue Date 2004-02 Type Journal Article Text version author URL http://hdl.handle.net/2297/1861 Right

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jacobi Polynomials, Type II Codes, and Designs

Jacobi polynomials were introduced by Ozeki in analogy with Jacobi forms of lattices They are useful for coset weight enumeration and weight enumeration of children We determine them in most interesting cases in length at most and in some cases in length We use them to construct group divisible designs packing designs covering designs and t r designs in the sense of Calderbank Delsarte A major ...

متن کامل

Triple factorization of non-abelian groups by two maximal subgroups

The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...

متن کامل

Designs in Product Association Schemes

Let (Y; A) be an association scheme with primitive idempotents E 0 ; E 1 ;. .. ; E d. For T f1;. .. ; dg, a Delsarte T-design in (Y; A) is a subset D of Y whose characteristic vector is annihilated by the idempotents E j (j 2 T). The case most studied is that in which (Y; A) is Q-polynomial and T = f1;. .. ; tg. For many such examples, a combina-torial characterization is known, giving an equiv...

متن کامل

Sweep Line Algorithm for Convex Hull Revisited

Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...

متن کامل

Nonexistence of Certain Spherical Designs of Odd Strengths and Cardinalities

A spherical τ -design on S is a finite set such that, for all polynomials f of degree at most τ , the average of f over the set is equal to the average of f over the sphere S. In this paper we obtain some necessary conditions for the existence of designs of odd strengths and cardinalities. This gives nonexistence results in many cases. Asymptotically, we derive a bound which is better than the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2004